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Investigating Autism Patient Social Interaction 
Monitoring and Evaluation Through Audio 

Analysis Using Wearable Technology 

 
Abstract— This study presents a novel, automated 

framework that leverages wearable technology and speaker 
diarization algorithm to objectively measure speaking time 
as a proxy for sociability, addressing the challenge of 
subjective data collection and analysis in assessing social 
interactions of individuals with autism spectrum disorder 
(ASD). A smartwatch app was developed to collect audio, 
heart rate in naturalistic settings to extract the patient’s total 
speaking time and further context of their social patterns. 
Results from the algorithm were compared to manually 
labeled voice data as our ground truth to calculate accuracy. 
Clinical testing was done with 20 participants with ASD 
ranging from ages 7-24. Analysis of over 350 hours of voice 
data confirmed the algorithm’s high accuracy in clear audio 
conditions, with minimal deviation from ground truth. 
Contextual data like heart rate provide additional insights 
into engagement patterns. Amazon Web Services (AWS) 
infrastructure was utilized for data processing and analysis 
to ensure reliable handling of the objective data. Patient data 
was visualized through a dashboard where physicians can 
potentially gain actionable insights into social development 
patterns. This multimodal, data-driven approach offers a 
scalable method to monitor social interaction in ASD, 
supporting personalized treatment planning and enhancing 
ASD behavioral research reliability. 

 
Index Terms— Autism Spectrum Disorder, Speaker 

Diarization, Social Communication, Wearable Technology, 

Machine Learning, Objective Measurement. 

I. INTRODUCTION 

utism Spectrum Disorder (ASD) is a developmental 

disability that presents unique challenges in how an 

individual assesses social interaction, communication, 

and behavioral patterns. Children with ASD often face 

significant learning challenges due to cognitive limitations. 

This includes sensory perception, information processing, 

attention span and memory retention, in particular attention 

playing a crucial role in determining learning success [1]. ASD 

is prevalent, with 1 in 36 children being diagnosed with ASD. 

This relatively high prevalence highlights the importance of 

ASD research, assessment tools and interventions [2]. Current 

assessments in ASD predominantly rely on subjective measures 

like questionnaires, interviews, or observational reports from 

the caregiver. These assessments introduce subjectiveness and 

bias that could complicate accurate treatment [3]. This issue is 

further exacerbated in the relationship between the caregiver, 

child and physician as the caregiver is not able to be present in 

the child’s everyday social interaction, including educational 

settings, after-school activities, or other peer gatherings, 

 
 

leading to a gap in information to assess social development. 

This leads to difficulty for the physician to track meaningful 

social development over time and give accurate treatment 

recommendations, often leading to inconsistencies in 

evaluations, treatment plans, and outcome assessments [4]. 

Given the high prevalence of ASD, the development of 

objective measurement tools capable of collecting quantifiable 

data is urgently needed. Such data are crucial for enabling more  

accurate and objective analyses to better our understanding of 

ASD and inform treatment decisions. 

To address the challenges of subjective self-reporting in 

social development among individuals with ASD, we 

developed an objective, technology-based strategy to capture 

and analyze real-time social interactions. This system integrates 

wearable technology with speaker diarization algorithms. 

Through a smartwatch, participants record their real-life 

conversations, which are analyzed to detect the user's speech 

segments and measure total speaking duration. This voice data, 

along with other health data such as heart rate readings, offers 

objective insights into patterns of social engagement. In our test 

involving participants with ASD, we assess algorithm accuracy 

by comparing the automatically estimated speaking time to 

manually labeled ground truth from recorded interactions, with 

overall speaking durations being reviewed manually and 

compared against the algorithm's outputs. 

Our aim is to objectively track sociability in individuals with 

ASD by capturing everyday activity. By analyzing speaking 

patterns and physiological engagement, the system provides 

quantitative insights into social behavior. These insights are 

intended to assist clinicians in monitoring behavioral changes 

over time, including evaluating improvements before and after 

interventions 

II. RELATED WORK 

 

Research on Autism spectrum disorder (ASD) now 

emphasizes digital health technologies which enhance 

traditional assessment techniques and treatment strategies. 

various technological approaches have emerged across the 

fields of behavioral monitoring, speech analysis, wearable 

tracking, and mobile-based observation. This section discusses 

existing research across five areas which relate to our research: 

contemporary ASD analytical technologies, speaker diarization 

in ASD, voice-based ASD behavioral patterns, wearable 

devices and mobile systems tracking social engagements and 

physiological signal analysis. 

A 
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A. Current Digital Approaches in ASD Analysis  

Earlier methods of evaluating social behavior within ASD 

individuals conducted their observations through professionals 

in controlled settings during face-to-face sessions [5]. While 

these approaches provided meaningful information, they were 

mainly dependent on subjective observations while lacking 

understanding of natural social behavior in typical everyday 

environment. 

The search for better behavioral analysis led recent ASD 

research to focus on digital platforms which combine motion 

data with audio and physiological information. Machine 

learning plays a key role in ASD monitoring through wearable 

devices, acknowledging its ability to detect complex patterns 

across various behavioral domains [6]. Saghafi et al. [7] 

investigated the potential of humanoid robots to advance social 

connections between children with ASD during purposeful play 

activities. Their findings indicated robotically assisted therapy 

methods can enhance verbal interactions thus demonstrating 

that robot embodiments can work alongside passive sensing 

systems for ASD behavioral assessment. Smartwatches like 

WearSense can display excellent detection of real-time 

stereotypic motor behavior which showcases continuous 

behavior tracking from wearable devices [8]. These studies 

highlight the value of digital approaches like wearable and ML-

based systems based on passive sensors and automated analysis 

for behavioral support.  

Despite the progress made, many digital solutions for ASD 

monitoring encounter persistent challenges such as user 

compliance, data privacy concerns, and limited contextual 

awareness in communication tracking [6], [9]. Existing 

technologies typically track physiological indicators or 

movement behaviors but tend to overlook verbal exchanges and 

conversation patterns. Our study extends prior research by 

speaker diarization, heart rate data. Which enables a 

comprehensive perspective of social engagement of ASD 

individual.  

B. Speaker Diarization and Voice-Based Behavioral 
Analysis in ASD Individuals 

Speaker diarization has emerged as a valuable method which 

enables the analysis of verbal interacrtion patterns in autism 

spectrum disorder contexts. O'Sullivan et al [5]. The main 

purpose of this research focused on determining if automatic 

speaker diarization procedures could effectively break down 

natural home conversations occurring between ASD 

participants and their conversation partners. The research found 

effective results where they tried to record on home 

environment with minimal background noises, they pointed out 

few challenging conditions causes inconsistent diarization 

performance thus indicating a need for additional optimization. 

Recent advancements in speaker diarization, particularly 

through deep learning methods [10], have improved the 

accuracy and reliability of these systems. 

Other studies have implemented diarization-based audio 

analysis methods on ASD participants to measure vocal 

engagement along with speaking times in diverse experimental 

conditions [11], [12]. The research showed how automated 

segmentation techniques could work yet their measurements 

primarily occurred in controlled environment settings or did not 

integrate multisensory data tracking. A notable development is 

the ASDSpeech algorithm, which analyzed 99,193 

vocalizations from 197 ASD children using convolutional 

neural networks to quantify social communication difficulties 

during clinical assessments [13]. While ASDSpeech focused on 

clinical severity scoring in stationary control environments with 

microphones, our work emphasizes diarization accuracy in 

everyday environments, comparing algorithmic speaking time 

with manual labels to support objective behavioral tracking. 

Our work adopts Pyannote.audio [14]. along with reference 

participant samples to enhance diarization performance during 

real-world use. The proposed method uses speech diarization 

results to link heart rate data which creates an expandable 

system for ASD continuum social behavior observation. 

III. METHODOLOGY  

 

Including overall system workflow is shown in Fig. 1, the end-

to-end workflow from data collection to analysis. Wear OS–

based audio recorder application that prompts participants at 

scheduled intervals to record audio during natural 

conversations. Upon activation, the app captures audio (.m4a) 

and heart rate (.json) data, which are securely uploaded to an 

AWS S3 bucket. An AWS Lambda function monitors the 

bucket and triggers preprocessing, including conversion of 

audio files from .m4a to .wav format. Metadata from the 

uploaded files is sent as messages to an AWS SQS queue, The 

speaker diarization algorithm in AWS SageMaker obtains the 

audio file from the SQS queue of messages and processes it and 

stores it in the AWS RDS database.. A separate Lambda 

function, managed via CloudWatch events, handles the 

lifecycle of the SageMaker instance. Finally, the processed data 

is visualized through a web dashboard, providing clinicians and 

researchers with real-time insights into social engagement 

patterns in individuals with ASD. 

 
 

Fig. 1. System Architecture. 

A. Wearable Audio Recorder Application  

The Audio Recorder application named “Core Autism” was 

developed in Java for Wear OS devices. The app acts as a 

recording mechanism that collects audio data along with the 

user's health data like heart rate which transmits to an AWS S3 

bucket for further processing.  
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                                                           Fig. 2. Audio Recorder Application User Interface Flow 

 

The application comprises six primary user interface screens: 

a Login Page, Recording Interface, Password Page, Menu Page, 

Audio Files Page, and Sign-Out Page. Upon launching the app, 

users are greeted with the Login Page, where they are prompted 

to enter their name. We didn’t use a password for this study 

because each participant was manually onboarded by the 

research team and assigned a pseudonym for privacy reasons, 

eliminating the need for individual login credentials. The app 

was intentionally kept simple, allowing participants to focus 

solely on starting and stopping recordings. Administrative 

actions, such as signing out, were protected by an internal 

password not accessible to participants. This approach ensured 

ease of use while maintaining data security. In future public 

deployments, a secure login system may be introduced to 

support wider usage and enhance privacy safeguards. 

Following login, users are directed to the Recording Interface, 

which initially displays a pop-up prompting the user to record a 

30-second audio clip used for speaker identification. The screen 

also displays the total recorded time for ongoing sessions. 

Access to the Menu Page requires authentication via the 

Password Page, providing a basic layer of security. The Menu 

Page allows users to navigate either the Audio Files Page or the 

Sign-Out Page. The Audio Files Page presents a list of 

previously recorded audio files, each with options to play or 

delete. Finally, the Sign-Out Page confirms the user’s intention 

to exit the app. The interface is designed using Android’s XML 

layout system, promoting separation between visual design and 

functional logic. As the entire flow shown in Fig. 2, the app 

ensures a user-friendly experience with clear navigation and 

guided prompts throughout the interaction flow. 

The app primarily captures the audio data using the 

MediaRecorder APIs at a sampling rate of 44.1 kHz and 128 

kbps, saved in .m4a format, Health data such as heart rate 

collects while recording and saved in Json format. All recorded 

data contains timestamps for precise alignment in downstream 

analysis that makes it possible to find correlations between 

physiological responses and social engagement. The 

application requests the user for essential permissions as shown 

in Fig. 3. to access microphones and sensors before allowing 

protected data transmission and storage through AWS Amplify 

using proper authentication methods, these permission requests 

are triggered only during the first login of a new user and remain 

in effect until the user logs out. 

 

 

                 
 

 

Fig. 3. Audio Recorder Application Notifications Layouts 

B. Speaker Diarization for Voice Analysis. 

In our study, we used a deep learning–based speaker 

diarization system using the pyannote-audio framework [14]. 

which is summarized in Fig. 4. This pipeline breaks down audio 

streams to identify “who spoke when” [15]. The diarization  

process starts with Speaker Activity Detection (SAD) which 

detects speech regions after which follows by Speaker Change  

Detection using Hidden Markov Models (HMMs) techniques 
[16]. Which analyze speaker transitions with probabilities 

derived from annotated datasets. The Viterbi algorithm is 

employed to compute the most likely sequence of speaker 

changes, annotating speech and silence regions with respect to 

speaker boundaries. This is followed by pulling out speaker 

embeddings using deep neural networks such as LSTMs and 

CNNs, which are trained to learn discriminative features from 

the acoustic signal. The embeddings are subsequently clustered 

using unsupervised models such as K-means and Gaussian 

Mixture Models (GMMs) to label segments with different 

speaker identities. The pipeline includes overlapped speech 

detection as a step to detect speaker overlap and performs re-

segmentation for improving speaker identification which 

improves accuracy under poor audio conditions. 

 

To ensure accurate identification of participant speech, our 

approach incorporated a short, pre-recorded voice sample 

collected during participant enrollment. This sample was 

prefixed to each subsequent conversation recording, allowing 

the diarization system to reliably recognize and isolate the 

participant’s speech from other speakers and background noise. 

This setup facilitates a straightforward extraction of the target 

speaker's data by filtering the output to retain only the first 

speaker's segments. This strategy proved particularly effective 

in naturalistic environments characterized by overlapping 

conversations and ambient sounds. Diarized results were then 

time-aligned and compared against manually labeled results to 

compute the Diarization Error Rate (DER), accounting for false 

alarms, missed speech, and speaker confusion. This entire 
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process ensured robust, participant-specific speech extraction, 

supporting the downstream analysis of sociability metrics 

critical for ASD research. 

 

 
Fig. 4. Pyannote-Audio Speaker Diarization System [10].  
 

C. Cloud Services Integration and Reporting 
Mechanism. 

To enable secure, scalable, and efficient management of 

participant data, a fully cloud-based infrastructure was 

implemented. The system architecture integrates multiple AWS 

services to support seamless data transmission, real-time 

processing, reliable storage, and downstream analysis. Each 

service was strategically selected to optimize performance, 

ensure data integrity, and automate the entire workflow of data 

collection, storage, processing, and retrieval, The key 

components of the cloud infrastructure are described as follows. 

1. AWS Amplify 

 AWS Amplify is a collection of development tools enabled 

for building safe and scalable applications. It allows a 

declarative interface for working with cloud services while 

providing better control to configure and manage cloud 

resources, through simplified resource management steps that 

significantly speeds up the development process. AWS amplify 

reduces much of the complex boilerplate code, it offers simple 

declarative APIs which makes it easily integrate with different 

AWS cloud services including authentication, analytics, and 

data storage functions. The Amplify CLI and Libraries along 

with Studio and UI Components and the Hosting segment allow 

developers to work with full-stack applications across iOS, 

Android, Flutter, Web and React Native platforms.  

The Core Autism app uses AWS Amplify for secure data 

transfer from the app to AWS S3. The software efficiently 

handles uploading the collected audio and heart rate files to the 

designated S3 storage bucket, maintaining security and data 

integrity throughout the transfer process. The simple process of 

integration by AWS Amplify turns the data transfer workflow 

efficient while enabling timely and secure processing of all the 

user data. The Wear OS application depends on this feature for 

maintaining overall functionality and reliability along with 

securely managing the user data. 

2. AWS S3 (Simple Storage Service) 

Amazon S3 operates as an object storage service which 

provides high scalability to store and retrieve large amounts of 

data across the web from anywhere. This service provides a 

durability rate of 99.99% and 99.99% object availability over 

the course of a year. Amazon S3 provides multiple S3 storage 

classes which includes S3 Standard for active data retrieval and 

S3 Intelligent-Tiering for automated cost optimizing by shifting 

data between different tiers according to access patterns, and S3 

Glacier and S3 Glacier Deep Archive for long-term data storage 

purposes.    

In our project, S3 works as the main storage service to store 

both raw and processed audio files together heart rate data. The 

Core Autism app uploads audio files (.mp4) and heart rate files 

(.json) to an S3 bucket through AWS Amplify securely. After 

file upload to S3 the Lambda function triggers to handle the data 

and transforms .mp4 files to .wav format to meet processing 

requirements and then it moves the files into a different S3 

storage space for further analysis. 

3. AWS Sagemaker 

AWS SageMaker is a fully managed service that simplifies 

the process of building, training, and deploying machine 

learning models, allowing developers and data scientists to 

quickly build and develop high-quality models with less effort 

and at a lower cost. SageMaker simplifies the workflow by 

providing a fully integrated Jupyter notebook instance to access 

data sources directly and avoids server management for the 

user.    

This project uses an algorithm that analyzes audio as well as 

heart rate data, hosted on SageMaker. The speaker diarization 

algorithm is integrated on SageMaker and interacts with other 

AWS services. It polls messages from an SQS queue, 

downloads corresponding audio (.wav) heart rate (.json) files 

from S3 into temporary storage, then performs speaker 

diarization using the 'pyannote-audio' library, speaking time for 

the particular target speaker, and finally stores the result to an 

RDS database. It clears out the temporary storage after every 

operation and polls for messages until either the queue is empty 

or the runtime limit (initially set to 1 hour in order to cut costs) 

is reached. 

4. AWS Queue 

Amazon SQS is a fully managed message queuing service that 

enables decoupling and scaling of microservices, distributed 

systems, and serverless applications. In this project, SQS 

manages message queues between different components of the 

application, including communication between the database 

and backend, and handling asynchronous task processing.    

For each audio file, a new message is created and placed in the 

SQS queue. The message contains the following details: the 

.wav audio file's S3 bucket location and its corresponding heart 

rate .json file location. SQS ensures reliable delivery of these 

messages even in the event of component failures, allowing for 

a fault-tolerant and scalable system. The decoupling achieved 

by SQS improves system resilience, maintains data integrity, 

and enables seamless scaling as the application grows.    

5. AWS RDS 

Amazon RDS was employed to manage the storage of 

processed audio and heart rate data in a structured format. RDS 

automates database setup, operation, and scaling by handling 

tasks like provisioning, patching, and backups.    

In this project, RDS stores the results of the speaker 

diarization algorithm. For each user, a new row is created in the 

database, and if the user already exists, the results (including 

speaking time, start and end time, and heart rate file) are 

appended to their existing record. The processed data is then 

efficiently retrieved by the Flask backend and communicated to 

the Angular frontend, ensuring that the results are displayed on 

the user dashboard in a seamless and scalable manner. RDS's 
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cost-efficiency and resizable capacity allowed us to focus on 

data analysis and visualization without worrying about database 

management complexities. 

IV. EXPERIMENTS 

A. Study Design 

A total of 20 participants were selected for the trial of the app, 

two of which decided to drop from the study voluntarily. The 

18 participates who completed the study include 11 male 

(61.1%) and 7 female (38.8%). Participants were between the 

ages of 7 and 24, diagnosed with ASD verbal, and willing to 

wear a smartwatch. All participants had a primary diagnosis of 

ASD and were in the higher functioning range. ASD, AD, and 

AS individuals were taken into consideration as well. 

Participants who were nonverbal were excluded from the study. 

FSIQ (Full Scale IQ), VIQ (Verbal IQ), NVIQ (Nonverbal 

IQ), and IQ test scores were recorded, but no specific limit was 

set on IQ scores, as the goal was to include a diverse range of 

individuals with ASD. It was crucial that participants could 

consistently follow detailed instructions related to app usage for 

the 2–3-week period to ensure reliable verification. 

All participants were onboard and fully informed about the 

nature, purpose and procedures of the study. The participant 

doesn’t get a direct benefit, but this study allows us to build 

further along the app and future revisions with the algorithm to 

further test and add on features. This research may benefit 

society by providing better measurements of stress and social 

outcomes. All minors were consented by both the parent and 

child. 

The privacy of participants was of the utmost consideration. 

Participants were given pseudonyms so that their names could 

not be traced back to them. All participants were given a 

participant number ranging from 1–20. All recordings are 

stored on secure Microsoft and Amazon servers which are 

limited to only certain members of the research team. People 

that didn’t directly work with participant data did not have 

access to them. All emails referring to participants were 

referred to by their pseudonyms, not their actual names, in case 

of email leaks. 

All participants in the study were onboard at the Thompson 

Center for Autism & Neurodevelopment. When participants 

arrived at the Autism Center, they were greeted and introduced 

to the entire study and our goal of testing the watch’s algorithm 

for voice recognition. After, they were presented with an 

informed consent form. After completing the consent process, 

they were informed about the application's features, how to 

record their voice, and do initial setup of their voice. The setup 

of their voice was done by recording their voice while reading 

a short ~5 paragraph to ensure the algorithm gets a voice for it 

to look for. 

Users would get a notification from 9am to 5pm every two 

hours to remind them to record. Any recording made will get a 

notification after one hour to stop the recording if they want to. 

Participants were encouraged to record their social 

interactions with other people and were recommended not to 

record during situations that were not socially interactive. 

Examples include one-on-one conversation engaging in 

dialogue with teachers, friends, family, or any other person; 

group discussion engaging in dialogue in a group setting like a 

family dinner, team meeting, group of friends, or a classroom 

discussion. This also includes online conversation with voice 

chat using Discord, FaceTime, Zoom, and Microsoft Teams. 

Generally, we recommend not recording during moments that 

are not socially interactive, such as reading, watching TV alone, 

and non-social settings. Passive participation while participants 

might be in a social situation, where they are with other people, 

they might not be actively participating. We recommend not to 

record in these situations; an example of this is listening to a 

lecture in class. 

We asked the participants for a goal of 14 hours of total 

recording time for the initial 2-week period. An additional week 

could be assigned if the goal of 14 hours was taking longer than 

expected and/or troubleshooting was needed. After completion 

of the study, participants were interviewed to provide feedback 

about the watch using a participant feedback form. 

To assess the algorithm's accuracy against manually labeled 

data, we implemented a methodical comparison process. We 

aimed to review a total of 14 hours of recordings—the initial 

target set for participant involvement in the study. To achieve 

this, each file was assigned a sequential number from the total 

pool of recordings. We then used a random number generator 

to select specific files for manual labeling. This selection was 

repeated until we accumulated 14 hours of recordings. The 

alternative approach involved selecting audio files that featured 

clearer conversations with minimal overlapping voices and 

background noise. 

V. RESULTS 

A. Individual Participant Analysis 

Participant PA2 was enrolled in the study for a two-week 

period, during which she used the app consistently. Although 

the minimum required recording duration was 14 hours, PA2 

contributed a total of 30.13 hours across 50 recordings, 

averaging over 2 hours per day. The total speaking time, as 

extracted by the diarization algorithm, was 0.96 hours, with 

noticeable day-to-day variability. 

 

 
   Fig. 5. Session-wise recording and speaking time for one study day. 

 

To explore this highly active day in greater detail, Fig. 5. 

presents the session-level breakdown of recording and speaking 

durations on one day from their entire study. Each session is 

represented with yellow bars for total recording duration and 

blue bars for actual speaking time. For instance, one session 

from 15:36 to 16:33 lasted 56.3 minutes, of which 33.1 minutes 
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were identified as active speaking—a high engagement ratio. 

This session structure helped reveal not just total usage, but also 

how much of each session included verbal activity. 

 

Fig. 6. Session-wise Heart rate trends with speaking time for one 

study day. 

 

Fig. 6. shows the heart rate trends during the same day’s 

sessions, with speaking intervals marked. The participant’s 

heart rate showed notable fluctuations during active sessions, 

reaching a peak of 163 bpm during the 16:42 session, which 

included 1,498 seconds (~25 minutes) of speech. This 

alignment between heart rate activity and speaking time 

suggests a possible link between verbal engagement and 

physiological response, warranting further investigation. 

 

        
   Fig. 7. Participant’s Total Speaking Time Throughout the Study 
 

Fig. 7. shows the participant’s total speaking time per day 

throughout the study. A significant spike occurred on 26-02-

2024, with 6,603 seconds (110 minutes) of speaking time, 

accounting for a major portion of her overall speech data. 

 

Manual label analysis of 34% of PA2’s files confirmed high 

diarization accuracy, ranging from 85.5% to 98.6%, with a 

mean of 92.52%. PA2 demonstrated active participation, 

including speaking during social contexts and singing when 

alone. In post-study feedback, she described the app as “easy to 

use” and noted that “the reminders helped [her] record 

consistently.” Her consistent involvement and detailed 

physiological and behavioral data provided valuable 

contributions to the study’s objectives. 
 

TABLE 1 

PARTICIPANT’S TOTAL AUDIO RECORDING TIME WITH ALGORITHM AND 

MANUAL SPEAKING TIME RESULTS FOR SELECTED FILES. 

 

Participants Total Recording  

Time (hrs) 

Algorithm 

Results (hrs) 
Manual Labels 

(hrs) 

PA0 6.20 0.38 0.39 

PA1 12.5 3.11 3.15 

PA2 10.5 2.78 2.80 

PA3 20.2 2.28 1.58 

PA4 10.1 1.73 1.80 

PA5 5.66 1.06 1.02 

PA6 1.19 0.28 0.26 

PA7 8.40 1.80 1.92 

PA8 14.73 2.22 2.40 

PA9 8.96 0.27 0.24 

PA10 9.78 3.11 1.28 

PA11 11.8 1.91 1.57 

PA12 9.83 2.50 2.47 

PA13 7.05 1.40 1.53 

PA14 7.00 2.37 1.95 

PA15 10.6 1.88 2.60 

PA16 13.21 0.84 2.44 

PA18 16.71 0.68 2.16 
 

B. Overall Data Analysis 

Table 1 summarizes the total audio recording time, algorithm-

derived speaking time, and manually labeled speaking time for 

a selected subset of recordings from each participant. These 

selected files were used to evaluate the diarization algorithm’s 

performance under varying conditions. Across all participants, 

there was considerable variability in speaking duration relative 

to the total recording time. This analysis was conducted under 

two specific evaluation conditions: a best-case scenario using 

carefully selected files with high audio quality, and a random 

selection scenario representing more naturalistic and 

uncontrolled audio environments. 

B.1 Best-Case Scenario 

In the best-case approach to selecting audio files for labeling 

and accuracy verification with the algorithm is methodical. 

From each participant's daily recordings, carefully choose one 

or two files that best represent the conditions. Specifically, 

prioritize recordings that are relatively clear, with minimal 

background noise, and feature more conversational content.  

These files allowed the diarization algorithm to be tested 

under optimal conditions. As shown in Fig. 8 (left), the 

algorithm closely matched the manually labeled speaking time 

for most participants. Participants PA1, PA2, and PA12 

achieved over 98% accuracy, with minimal difference between 

algorithm and manual outputs. The average accuracy across all 

cherry-picked files was 95.25%, reflecting strong algorithmic 

performance when audio quality is high. A notable exception 

was PA3, whose recordings included loud background 

conversations and overlapping speakers, resulting in lower 

accuracy. 

B.2 Random Selection Scenario 

In the randomly selected audio files approach, Files were 

chosen from each participant’s recordings based on a 

chronological download order ranging from the earliest to the 

most recent. Then, each file numbered according to its position 

in the sequence. A random selection from these files was made 

until the total length of the selected recordings exceeded around 
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14 hours. This method introduced a mix of environments, 

including background noise, overlapping speech, and other 

real-world audio challenges. As shown in Fig. 8 (right), these 

factors led to a noticeable drop in algorithm performance. 

Participants such as PA10, PA16, and PA18 showed the largest 

discrepancies between algorithm and manual labels. The 

average accuracy across randomly selected files was 49.91%, 

highlighting the algorithm’s sensitivity to complex and noisy 

conditions. 

 
Fig. 8. Algorithm vs. manual speaking time for cherry-picked (left) and 
randomly picked (right) audio files. 

E. Analysis of Total Recording and Speaking Time 

Participants demonstrated substantial variability in both total 

recording duration and actual speaking time. The mean 

recording time was 20.92 hours, with a median of 16.45 hours 

and a standard deviation of 15.46 hours, reflecting diverse 

engagement levels. Some participants, such as PA3 (63.94 hrs) 

and PA8 (53.71 hrs), contributed extensive recordings but with 

proportionally lower speaking time—4.41 hrs and 12.90 hrs, 

respectively. In contrast, PA5, with a modest 16.98 hours of 

recording, yielded 3.49 hours of speaking time, indicating more 

active verbal participation during recordings.  

These observations underscore the importance of evaluating 

not just the volume of recorded data, but the amount of 

meaningful speech content it contains. In some cases, lower 

speaking time may be attributed to background noise or 

environmental interference within the recordings, which can 

hinder the algorithm's ability to detect and isolate the 

participant’s voice. The overall distribution is summarized in 

Table 2, and a visual comparison is presented in Figure 9. 

 
TABLE 2 

PARTICIPANTS TOTAL AUDIO RECORDING TIME AND ALGORITHM-DERIVED 

SPEAKING TIME ACROSS THE ENTIRE STUDY. 

 

Participants Total Recording 
Time (hrs) 

Total Speaking 
Time (hrs) 

PA0 12.30 0.96 

PA1 24.43 5.90 

PA2 30.13 0.96 

PA3 63.94 4.41 

PA4 15.72 3.86 

PA5 16.98 3.49 

PA6 1.56 0.39 

PA7 26.47 4.13 

PA8 53.71 12.90 

PA9 15.72 0.92 

PA10 10.74 3.80 

PA11 15.91 2.05 

PA12 26.56 6.57 

PA13 8.86 1.96 

PA14 8.03 2.57 

PA15 11.58 1.44 

PA16 17.30 1.69 

PA18 22.05 1.32 

 

 
Fig. 9. Total recording vs. algorithm extracted speaking time per 

participant. 

F. Participant Feedback 

Post-study interviews were conducted to gather participants' 

feedback regarding the app and the smartwatch's usability. 

participants revealed both positive experiences and areas for 

improvement. Several users found the reminders helpful 

“Reminders were good they helped me remember to record” 

and described the app as “easy to use and clear.” Some reported 

that “reminders came at the wrong time a few times” 

specifically during classroom lectures when speaking was not 

feasible. Suggested improvements like “I didn’t know when it 

started recording — maybe a vibration would help.” Hardware 

discomfort was also noted, with participants stating, “the watch 

felt heavy and made my wrist sweat” and “the strap was itchy I 

had to take it off during the day.” Others experienced technical 

issues, saying “one time it said recording, but the file was not 

saved,” and “battery ran out during recording, and it didn’t 

save.” A participant’s parent suggested adding a total recording 

time display to “track how many hours they have recorded so 

far,” which led to the implementation of a new progress-

tracking feature. In contrast, one participant withdrew from the 

study, expressing that they were not really confident to talk 

while recording than usual. These insights were really helpful 

and directly influenced changes to improve usability, comfort, 

and recording reliability in future iterations. 

G. Analysis of the Algorithm 

PyannoteAudio diarization algorithm was evaluated under 

two distinct conditions: cherry-picked audio files with minimal 

background noise and randomly selected audio files with 

varying levels of noise and overlap. The algorithm 

demonstrated high performance on clear audio files, achieving 

a low Diarization Error Rate (DER). However, performance 

decreased significantly when background noise or overlapping 

speakers were present, highlighting a need for refinement in 

handling complex audio environments.  

Participants demonstrated diverse levels of engagement during 

the study, with speaking times varying significantly across 

individuals. The following insights were observed based on the 

data: 

 

1) Impact of Recording Prompts: Participants who 

followed the app’s scheduled prompts and recorded in 
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environments with clear speech and minimal 

background noise showed significantly higher 

speaking times and improved data quality. This 

highlights the effectiveness of well-timed prompts and 

the importance of noise-free conditions for accurate 

data collection and better algorithm performance.  

2) Environmental Factors: Participants recorded in 

quieter, controlled environments with minimal 

background noise, also recording made during group 

conversations where the participant's voice was clear 

without loud overlapping voices, generally provided 

high-quality data. Participants recording in noisier or 

more dynamic environments, such as public spaces 

with interruptions, heavy crowds, overlapping voices, 

or loud music, experienced difficulties capturing clear 

participant voices. These conditions posed significant 

challenges for the diarization algorithm.  

VI. DISCUSSION 

A. Effect of Recording Quality on Diarization Accuracy 

Comparison between randomly labeled files and selectively 

chosen recordings revealed several key insights. Files with 

minimal background noise and clear participant speech 

consistently produced higher-quality data and more accurate 

diarization outcomes. These recordings demonstrated lower 

Diarization Error Rates (DER), indicating optimal algorithm 

performance under favorable conditions. 

In contrast, randomly selected files often included 

overlapping speech, background disturbances, and 

environmental noise, resulting in greater variability in accuracy 

and higher DER values. These observations highlight current 

limitations in diarization performance under real-world audio 

conditions. 

Controlled recording conditions significantly enhance the 

quality of speaker recognition outcomes. Real-world challenges 

such as ambient noise and overlapping voices expose the need 

for improved noise-handling and voice separation techniques. 

B. Suitable Audio Recordings 

In our research, we looked for more conversational audio 

recordings captured from the participants’ daily surroundings 

which are useful for testing the algorithm’s effectiveness for 

users voice recognition, rather than just files filled with 

excessive background noise and loud music, In our scenario, a 

suitable audio file is simply a conversational recording without 

loud background noise or music that excessively interferes with 

the participant's voice. These findings highlight the importance 

of recording conditions and suggest strategies to improve both 

user engagement and algorithm performance.  

C. Study Limitations and Participant Bias 

A limited sample size of 18 may not be sufficient to generalize 

findings to include a broader population of individuals of ASD. 

We are looking at individuals with ASD that are more verbal 

and higher functioning. Demographic constraints from the age 

range of 7-24 years old with a requirement for participants to 

be higher function limits the generalizability of all individuals 

with ASD, particularly those who are younger, older, and lower 

functioning.  

Reactivity Bias (Hawthorne Effect) must be taken into 

consideration as well. Participants were asked to wear a watch 

to self-record their social interactions. The bias occurs when 

the participant alters their behavior due to their awareness that 

they are going to be recording, being monitored and observed 

later. Wearing the smartwatch can influence the participant to 

speak more or less than they typically would.   

VII. CONCLUSION 

This study demonstrates the successful integration of wearable 

technology, cloud computing, and user-centered design to 

enhance communication monitoring for individuals with 

autism. By developing an Android-based wearable audio 

recorder, a scalable AWS backend, and an intuitive dashboard, 

the system offers reliable data capture, processing, and 

visualization. A novel speaker identification approach, using a 

sample of the target speaker’s voice, improved diarization 

performance across diverse conditions. Despite technical 

challenges—such as achieving precise notification timing, 

automating cloud environment setup, and visualizing high-

volume data, the system was refined through iterative 

development and validated through structured testing. The 

project not only meets technical goals but also emphasizes 

usability and accessibility, with future plans focused on scaling 

the platform, integrating real-time analytics, and expanding 

deployment through app store release and broader user testing. 

Future work will also explore the integration of sensor and 

patient activity data, enabling a more comprehensive 

understanding of behavioral context and communication 

patterns in naturalistic environments. 
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