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Investigating Autism Patient Social Interaction
Monitoring and Evaluation Through Audio
Analysis Using Wearable Technology

Abstract— This study presents a novel, automated
framework that leverages wearable technology and speaker
diarization algorithm to objectively measure speaking time
as a proxy for sociability, addressing the challenge of
subjective data collection and analysis in assessing social
interactions of individuals with autism spectrum disorder
(ASD). A smartwatch app was developed to collect audio,
heart rate in naturalistic settings to extract the patient’s total
speaking time and further context of their social patterns.
Results from the algorithm were compared to manually
labeled voice data as our ground truth to calculate accuracy.
Clinical testing was done with 20 participants with ASD
ranging from ages 7-24. Analysis of over 350 hours of voice
data confirmed the algorithm’s high accuracy in clear audio
conditions, with minimal deviation from ground truth.
Contextual data like heart rate provide additional insights
into engagement patterns. Amazon Web Services (AWS)
infrastructure was utilized for data processing and analysis
to ensure reliable handling of the objective data. Patient data
was visualized through a dashboard where physicians can
potentially gain actionable insights into social development
patterns. This multimodal, data-driven approach offers a
scalable method to monitor social interaction in ASD,
supporting personalized treatment planning and enhancing
ASD behavioral research reliability.

Index Terms— Autism Spectrum Disorder, Speaker
Diarization, Social Communication, Wearable Technology,
Machine Learning, Objective Measurement.

|. INTRODUCTION

utism Spectrum Disorder (ASD) is a developmental

disability that presents unique challenges in how an

individual assesses social interaction, communication,

and behavioral patterns. Children with ASD often face
significant learning challenges due to cognitive limitations.
This includes sensory perception, information processing,
attention span and memory retention, in particular attention
playing a crucial role in determining learning success [1]. ASD
is prevalent, with 1 in 36 children being diagnosed with ASD.
This relatively high prevalence highlights the importance of
ASD research, assessment tools and interventions [2]. Current
assessments in ASD predominantly rely on subjective measures
like questionnaires, interviews, or observational reports from
the caregiver. These assessments introduce subjectiveness and
bias that could complicate accurate treatment [3]. This issue is
further exacerbated in the relationship between the caregiver,
child and physician as the caregiver is not able to be present in
the child’s everyday social interaction, including educational
settings, after-school activities, or other peer gatherings,

leading to a gap in information to assess social development.
This leads to difficulty for the physician to track meaningful
social development over time and give accurate treatment
recommendations, often leading to inconsistencies in
evaluations, treatment plans, and outcome assessments [4].
Given the high prevalence of ASD, the development of
objective measurement tools capable of collecting quantifiable
data is urgently needed. Such data are crucial for enabling more
accurate and objective analyses to better our understanding of
ASD and inform treatment decisions.

To address the challenges of subjective self-reporting in
social development among individuals with ASD, we
developed an objective, technology-based strategy to capture
and analyze real-time social interactions. This system integrates
wearable technology with speaker diarization algorithms.
Through a smartwatch, participants record their real-life
conversations, which are analyzed to detect the user's speech
segments and measure total speaking duration. This voice data,
along with other health data such as heart rate readings, offers
objective insights into patterns of social engagement. In our test
involving participants with ASD, we assess algorithm accuracy
by comparing the automatically estimated speaking time to
manually labeled ground truth from recorded interactions, with
overall speaking durations being reviewed manually and
compared against the algorithm's outputs.

Our aim is to objectively track sociability in individuals with
ASD by capturing everyday activity. By analyzing speaking
patterns and physiological engagement, the system provides
quantitative insights into social behavior. These insights are
intended to assist clinicians in monitoring behavioral changes
over time, including evaluating improvements before and after
interventions

Il. RELATED WORK

Research on Autism spectrum disorder (ASD) now
emphasizes digital health technologies which enhance
traditional assessment techniques and treatment strategies.
various technological approaches have emerged across the
fields of behavioral monitoring, speech analysis, wearable
tracking, and mobile-based observation. This section discusses
existing research across five areas which relate to our research:
contemporary ASD analytical technologies, speaker diarization
in ASD, voice-based ASD behavioral patterns, wearable
devices and mobile systems tracking social engagements and
physiological signal analysis.



A. Current Digital Approaches in ASD Analysis

Earlier methods of evaluating social behavior within ASD
individuals conducted their observations through professionals
in controlled settings during face-to-face sessions [5]. While
these approaches provided meaningful information, they were
mainly dependent on subjective observations while lacking
understanding of natural social behavior in typical everyday
environment.

The search for better behavioral analysis led recent ASD
research to focus on digital platforms which combine motion
data with audio and physiological information. Machine
learning plays a key role in ASD monitoring through wearable
devices, acknowledging its ability to detect complex patterns
across various behavioral domains [6]. Saghafi et al. [7]
investigated the potential of humanoid robots to advance social
connections between children with ASD during purposeful play
activities. Their findings indicated robotically assisted therapy
methods can enhance verbal interactions thus demonstrating
that robot embodiments can work alongside passive sensing
systems for ASD behavioral assessment. Smartwatches like
WearSense can display excellent detection of real-time
stereotypic motor behavior which showcases continuous
behavior tracking from wearable devices [8]. These studies
highlight the value of digital approaches like wearable and ML-
based systems based on passive sensors and automated analysis
for behavioral support.

Despite the progress made, many digital solutions for ASD
monitoring encounter persistent challenges such as user
compliance, data privacy concerns, and limited contextual
awareness in communication tracking [6], [9]. Existing
technologies typically track physiological indicators or
movement behaviors but tend to overlook verbal exchanges and
conversation patterns. Our study extends prior research by
speaker diarization, heart rate data. Which enables a
comprehensive perspective of social engagement of ASD
individual.

B. Speaker Diarization and Voice-Based Behavioral
Analysis in ASD Individuals

Speaker diarization has emerged as a valuable method which
enables the analysis of verbal interacrtion patterns in autism
spectrum disorder contexts. O'Sullivan et al [5]. The main
purpose of this research focused on determining if automatic
speaker diarization procedures could effectively break down
natural home conversations occurring between ASD
participants and their conversation partners. The research found
effective results where they tried to record on home
environment with minimal background noises, they pointed out
few challenging conditions causes inconsistent diarization
performance thus indicating a need for additional optimization.
Recent advancements in speaker diarization, particularly
through deep learning methods [10], have improved the
accuracy and reliability of these systems.

Other studies have implemented diarization-based audio
analysis methods on ASD participants to measure vocal
engagement along with speaking times in diverse experimental
conditions [11], [12]. The research showed how automated
segmentation techniques could work yet their measurements
primarily occurred in controlled environment settings or did not
integrate multisensory data tracking. A notable development is
the ASDSpeech algorithm, which analyzed 99,193
vocalizations from 197 ASD children using convolutional
neural networks to quantify social communication difficulties
during clinical assessments [13]. While ASDSpeech focused on
clinical severity scoring in stationary control environments with
microphones, our work emphasizes diarization accuracy in
everyday environments, comparing algorithmic speaking time
with manual labels to support objective behavioral tracking.
Our work adopts Pyannote.audio [14]. along with reference
participant samples to enhance diarization performance during
real-world use. The proposed method uses speech diarization
results to link heart rate data which creates an expandable
system for ASD continuum social behavior observation.

[1l. METHODOLOGY

Including overall system workflow is shown in Fig. 1, the end-
to-end workflow from data collection to analysis. Wear OS—
based audio recorder application that prompts participants at
scheduled intervals to record audio during natural
conversations. Upon activation, the app captures audio (.m4a)
and heart rate (.json) data, which are securely uploaded to an
AWS S3 bucket. An AWS Lambda function monitors the
bucket and triggers preprocessing, including conversion of
audio files from .m4a to .wav format. Metadata from the
uploaded files is sent as messages to an AWS SQS queue, The
speaker diarization algorithm in AWS SageMaker obtains the
audio file from the SQS queue of messages and processes it and
stores it in the AWS RDS database.. A separate Lambda
function, managed via CloudWatch events, handles the
lifecycle of the SageMaker instance. Finally, the processed data
is visualized through a web dashboard, providing clinicians and
researchers with real-time insights into social engagement
patterns in individuals with ASD.
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Fig. 1. System Architecture.

A. Wearable Audio Recorder Application

The Audio Recorder application named “Core Autism” was
developed in Java for Wear OS devices. The app acts as a
recording mechanism that collects audio data along with the
user's health data like heart rate which transmits to an AWS S3
bucket for further processing.
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Fig. 2. Audio Recorder Application User Interface Flow

The application comprises six primary user interface screens:
a Login Page, Recording Interface, Password Page, Menu Page,
Audio Files Page, and Sign-Out Page. Upon launching the app,
users are greeted with the Login Page, where they are prompted
to enter their name. We didn’t use a password for this study
because each participant was manually onboarded by the
research team and assigned a pseudonym for privacy reasons,
eliminating the need for individual login credentials. The app
was intentionally kept simple, allowing participants to focus
solely on starting and stopping recordings. Administrative
actions, such as signing out, were protected by an internal
password not accessible to participants. This approach ensured
ease of use while maintaining data security. In future public
deployments, a secure login system may be introduced to
support wider usage and enhance privacy safeguards.
Following login, users are directed to the Recording Interface,
which initially displays a pop-up prompting the user to record a
30-second audio clip used for speaker identification. The screen
also displays the total recorded time for ongoing sessions.
Access to the Menu Page requires authentication via the
Password Page, providing a basic layer of security. The Menu
Page allows users to navigate either the Audio Files Page or the
Sign-Out Page. The Audio Files Page presents a list of
previously recorded audio files, each with options to play or
delete. Finally, the Sign-Out Page confirms the user’s intention
to exit the app. The interface is designed using Android’s XML
layout system, promoting separation between visual design and
functional logic. As the entire flow shown in Fig. 2, the app
ensures a user-friendly experience with clear navigation and
guided prompts throughout the interaction flow.

The app primarily captures the audio data using the
MediaRecorder APIs at a sampling rate of 44.1 kHz and 128
kbps, saved in .m4a format, Health data such as heart rate
collects while recording and saved in Json format. All recorded
data contains timestamps for precise alignment in downstream
analysis that makes it possible to find correlations between
physiological responses and social engagement. The
application requests the user for essential permissions as shown
in Fig. 3. to access microphones and sensors before allowing
protected data transmission and storage through AWS Amplify
using proper authentication methods, these permission requests
are triggered only during the first login of a new user and remain
in effect until the user logs out.
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Fig. 3. Audio Recorder Application Notifications Layouts

B. Speaker Diarization for Voice Analysis.

In our study, we used a deep learning—based speaker
diarization system using the pyannote-audio framework [14].
which is summarized in Fig. 4. This pipeline breaks down audio
streams to identify “who spoke when” [15]. The diarization
process starts with Speaker Activity Detection (SAD) which
detects speech regions after which follows by Speaker Change
Detection using Hidden Markov Models (HMMSs) techniques
[16]. Which analyze speaker transitions with probabilities
derived from annotated datasets. The Viterbi algorithm is
employed to compute the most likely sequence of speaker
changes, annotating speech and silence regions with respect to
speaker boundaries. This is followed by pulling out speaker
embeddings using deep neural networks such as LSTMs and
CNNs, which are trained to learn discriminative features from
the acoustic signal. The embeddings are subsequently clustered
using unsupervised models such as K-means and Gaussian
Mixture Models (GMMs) to label segments with different
speaker identities. The pipeline includes overlapped speech
detection as a step to detect speaker overlap and performs re-
segmentation for improving speaker identification which
improves accuracy under poor audio conditions.

To ensure accurate identification of participant speech, our
approach incorporated a short, pre-recorded voice sample
collected during participant enrollment. This sample was
prefixed to each subsequent conversation recording, allowing
the diarization system to reliably recognize and isolate the
participant’s speech from other speakers and background noise.
This setup facilitates a straightforward extraction of the target
speaker's data by filtering the output to retain only the first
speaker's segments. This strategy proved particularly effective
in naturalistic environments characterized by overlapping
conversations and ambient sounds. Diarized results were then
time-aligned and compared against manually labeled results to
compute the Diarization Error Rate (DER), accounting for false
alarms, missed speech, and speaker confusion. This entire



process ensured robust, participant-specific speech extraction,
supporting the downstream analysis of sociability metrics
critical for ASD research.

Fig. 4. Pyannote-Audio Speaker Diarization System [10].
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C. Cloud Services Integration and Reporting
Mechanism.

To enable secure, scalable, and efficient management of
participant data, a fully cloud-based infrastructure was
implemented. The system architecture integrates multiple AWS
services to support seamless data transmission, real-time
processing, reliable storage, and downstream analysis. Each
service was strategically selected to optimize performance,
ensure data integrity, and automate the entire workflow of data
collection, storage, processing, and retrieval, The key
components of the cloud infrastructure are described as follows.

1. AWS Amplify

AWS Amplify is a collection of development tools enabled
for building safe and scalable applications. It allows a
declarative interface for working with cloud services while
providing better control to configure and manage cloud
resources, through simplified resource management steps that
significantly speeds up the development process. AWS amplify
reduces much of the complex boilerplate code, it offers simple
declarative APIs which makes it easily integrate with different
AWS cloud services including authentication, analytics, and
data storage functions. The Amplify CLI and Libraries along
with Studio and UI Components and the Hosting segment allow
developers to work with full-stack applications across iOS,
Android, Flutter, Web and React Native platforms.

The Core Autism app uses AWS Amplify for secure data
transfer from the app to AWS S3. The software efficiently
handles uploading the collected audio and heart rate files to the
designated S3 storage bucket, maintaining security and data
integrity throughout the transfer process. The simple process of
integration by AWS Amplify turns the data transfer workflow
efficient while enabling timely and secure processing of all the
user data. The Wear OS application depends on this feature for
maintaining overall functionality and reliability along with
securely managing the user data.

2. AWS S3 (Simple Storage Service)

Amazon S3 operates as an object storage service which
provides high scalability to store and retrieve large amounts of
data across the web from anywhere. This service provides a
durability rate of 99.99% and 99.99% object availability over
the course of a year. Amazon S3 provides multiple S3 storage
classes which includes S3 Standard for active data retrieval and
S3 Intelligent-Tiering for automated cost optimizing by shifting
data between different tiers according to access patterns, and S3
Glacier and S3 Glacier Deep Archive for long-term data storage
purposes.

In our project, S3 works as the main storage service to store
both raw and processed audio files together heart rate data. The
Core Autism app uploads audio files (.mp4) and heart rate files
(.json) to an S3 bucket through AWS Amplify securely. After
file upload to S3 the Lambda function triggers to handle the data
and transforms .mp4 files to .wav format to meet processing
requirements and then it moves the files into a different S3
storage space for further analysis.

3. AWS Sagemaker

AWS SageMaker is a fully managed service that simplifies
the process of building, training, and deploying machine
learning models, allowing developers and data scientists to
quickly build and develop high-quality models with less effort
and at a lower cost. SageMaker simplifies the workflow by
providing a fully integrated Jupyter notebook instance to access
data sources directly and avoids server management for the
user.

This project uses an algorithm that analyzes audio as well as
heart rate data, hosted on SageMaker. The speaker diarization
algorithm is integrated on SageMaker and interacts with other
AWS services. It polls messages from an SQS queue,
downloads corresponding audio (.wav) heart rate (.json) files
from S3 into temporary storage, then performs speaker
diarization using the 'pyannote-audio' library, speaking time for
the particular target speaker, and finally stores the result to an
RDS database. It clears out the temporary storage after every
operation and polls for messages until either the queue is empty
or the runtime limit (initially set to 1 hour in order to cut costs)
is reached.

4. AWS Queue

Amazon SQS is a fully managed message queuing service that

enables decoupling and scaling of microservices, distributed
systems, and serverless applications. In this project, SQS
manages message queues between different components of the
application, including communication between the database
and backend, and handling asynchronous task processing.
For each audio file, a new message is created and placed in the
SQS queue. The message contains the following details: the
.wav audio file's S3 bucket location and its corresponding heart
rate .json file location. SQS ensures reliable delivery of these
messages even in the event of component failures, allowing for
a fault-tolerant and scalable system. The decoupling achieved
by SQS improves system resilience, maintains data integrity,
and enables seamless scaling as the application grows.

5. AWS RDS

Amazon RDS was employed to manage the storage of
processed audio and heart rate data in a structured format. RDS
automates database setup, operation, and scaling by handling
tasks like provisioning, patching, and backups.

In this project, RDS stores the results of the speaker
diarization algorithm. For each user, a new row is created in the
database, and if the user already exists, the results (including
speaking time, start and end time, and heart rate file) are
appended to their existing record. The processed data is then
efficiently retrieved by the Flask backend and communicated to
the Angular frontend, ensuring that the results are displayed on
the user dashboard in a seamless and scalable manner. RDS's



cost-efficiency and resizable capacity allowed us to focus on
data analysis and visualization without worrying about database
management complexities.

[\VV. EXPERIMENTS

A. Study Design

A total of 20 participants were selected for the trial of the app,
two of which decided to drop from the study voluntarily. The
18 participates who completed the study include 11 male
(61.1%) and 7 female (38.8%). Participants were between the
ages of 7 and 24, diagnosed with ASD verbal, and willing to
wear a smartwatch. All participants had a primary diagnosis of
ASD and were in the higher functioning range. ASD, AD, and
AS individuals were taken into consideration as well.
Participants who were nonverbal were excluded from the study.

FSIQ (Full Scale 1Q), VIQ (Verbal 1Q), NVIQ (Nonverbal
1Q), and IQ test scores were recorded, but no specific limit was
set on IQ scores, as the goal was to include a diverse range of
individuals with ASD. It was crucial that participants could
consistently follow detailed instructions related to app usage for
the 2-3-week period to ensure reliable verification.

All participants were onboard and fully informed about the
nature, purpose and procedures of the study. The participant
doesn’t get a direct benefit, but this study allows us to build
further along the app and future revisions with the algorithm to
further test and add on features. This research may benefit
society by providing better measurements of stress and social
outcomes. All minors were consented by both the parent and
child.

The privacy of participants was of the utmost consideration.
Participants were given pseudonyms so that their names could
not be traced back to them. All participants were given a
participant number ranging from 1-20. All recordings are
stored on secure Microsoft and Amazon servers which are
limited to only certain members of the research team. People
that didn’t directly work with participant data did not have
access to them. All emails referring to participants were
referred to by their pseudonyms, not their actual names, in case
of email leaks.

All participants in the study were onboard at the Thompson
Center for Autism & Neurodevelopment. When participants
arrived at the Autism Center, they were greeted and introduced
to the entire study and our goal of testing the watch’s algorithm
for voice recognition. After, they were presented with an
informed consent form. After completing the consent process,
they were informed about the application's features, how to
record their voice, and do initial setup of their voice. The setup
of their voice was done by recording their voice while reading
a short ~5 paragraph to ensure the algorithm gets a voice for it
to look for.

Users would get a notification from 9am to Spm every two
hours to remind them to record. Any recording made will get a
notification after one hour to stop the recording if they want to.

Participants were encouraged to record their social
interactions with other people and were recommended not to
record during situations that were not socially interactive.
Examples include one-on-one conversation engaging in
dialogue with teachers, friends, family, or any other person;

group discussion engaging in dialogue in a group setting like a
family dinner, team meeting, group of friends, or a classroom
discussion. This also includes online conversation with voice
chat using Discord, FaceTime, Zoom, and Microsoft Teams.
Generally, we recommend not recording during moments that
are not socially interactive, such as reading, watching TV alone,
and non-social settings. Passive participation while participants
might be in a social situation, where they are with other people,
they might not be actively participating. We recommend not to
record in these situations; an example of this is listening to a
lecture in class.

We asked the participants for a goal of 14 hours of total
recording time for the initial 2-week period. An additional week
could be assigned if the goal of 14 hours was taking longer than
expected and/or troubleshooting was needed. After completion
of the study, participants were interviewed to provide feedback
about the watch using a participant feedback form.

To assess the algorithm's accuracy against manually labeled
data, we implemented a methodical comparison process. We
aimed to review a total of 14 hours of recordings—the initial
target set for participant involvement in the study. To achieve
this, each file was assigned a sequential number from the total
pool of recordings. We then used a random number generator
to select specific files for manual labeling. This selection was
repeated until we accumulated 14 hours of recordings. The
alternative approach involved selecting audio files that featured
clearer conversations with minimal overlapping voices and
background noise.

V. RESULTS

A. Individual Participant Analysis

Participant PA2 was enrolled in the study for a two-week
period, during which she used the app consistently. Although
the minimum required recording duration was 14 hours, PA2
contributed a total of 30.13 hours across 50 recordings,
averaging over 2 hours per day. The total speaking time, as
extracted by the diarization algorithm, was 0.96 hours, with
noticeable day-to-day variability.
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Fig. 5. Session-wise recording and speaking time for one study day.

To explore this highly active day in greater detail, Fig. 5.
presents the session-level breakdown of recording and speaking
durations on one day from their entire study. Each session is
represented with yellow bars for total recording duration and
blue bars for actual speaking time. For instance, one session
from 15:36 to 16:33 lasted 56.3 minutes, of which 33.1 minutes



were identified as active speaking—a high engagement ratio.
This session structure helped reveal not just total usage, but also
how much of each session included verbal activity.
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Fig. 6. Session-wise Heart rate trends with speaking time for one
study day.
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Fig. 6. shows the heart rate trends during the same day’s
sessions, with speaking intervals marked. The participant’s
heart rate showed notable fluctuations during active sessions,
reaching a peak of 163 bpm during the 16:42 session, which
included 1,498 seconds (~25 minutes) of speech. This
alignment between heart rate activity and speaking time
suggests a possible link between verbal engagement and
physiological response, warranting further investigation.
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Fig. 7. Participant’s Total Speaking Time Throughout the Study

Fig. 7. shows the participant’s total speaking time per day
throughout the study. A significant spike occurred on 26-02-
2024, with 6,603 seconds (110 minutes) of speaking time,
accounting for a major portion of her overall speech data.

Manual label analysis of 34% of PA2’s files confirmed high
diarization accuracy, ranging from 85.5% to 98.6%, with a
mean of 92.52%. PA2 demonstrated active participation,
including speaking during social contexts and singing when
alone. In post-study feedback, she described the app as “easy fo

use” and noted that “the reminders helped [her] record
consistently.” Her consistent involvement and detailed
physiological and behavioral data provided valuable

contributions to the study’s objectives.

TABLE 1
PARTICIPANT’S TOTAL AUDIO RECORDING TIME WITH ALGORITHM AND
MANUAL SPEAKING TIME RESULTS FOR SELECTED FILES.

Participants =~ Total Recording Algorithm Manual Labels
Time (hrs) Results (hrs) (hrs)

PAO 6.20 0.38 0.39

PA1 12.5 3.1 3.15

PA2 10.5 2.78 2.80
PA3 20.2 2.28 1.58
PA4 10.1 1.73 1.80
PA5 5.66 1.06 1.02
PA6 1.19 0.28 0.26
PA7 8.40 1.80 1.92
PA8 14.73 2.22 2.40
PA9 8.96 0.27 0.24
PA10 9.78 3.11 1.28
PA11 11.8 1.91 1.57
PA12 9.83 2.50 2.47
PA13 7.05 1.40 1.53
PA14 7.00 2.37 1.95
PA15 10.6 1.88 2.60
PA16 13.21 0.84 2.44
PA18 16.71 0.68 2.16

B. Overall Data Analysis

Table 1 summarizes the total audio recording time, algorithm-
derived speaking time, and manually labeled speaking time for
a selected subset of recordings from each participant. These
selected files were used to evaluate the diarization algorithm’s
performance under varying conditions. Across all participants,
there was considerable variability in speaking duration relative
to the total recording time. This analysis was conducted under
two specific evaluation conditions: a best-case scenario using
carefully selected files with high audio quality, and a random
selection scenario representing more naturalistic and
uncontrolled audio environments.

B.1 Best-Case Scenario

In the best-case approach to selecting audio files for labeling
and accuracy verification with the algorithm is methodical.
From each participant's daily recordings, carefully choose one
or two files that best represent the conditions. Specifically,
prioritize recordings that are relatively clear, with minimal
background noise, and feature more conversational content.

These files allowed the diarization algorithm to be tested
under optimal conditions. As shown in Fig. 8 (left), the
algorithm closely matched the manually labeled speaking time
for most participants. Participants PAl, PA2, and PA12
achieved over 98% accuracy, with minimal difference between
algorithm and manual outputs. The average accuracy across all
cherry-picked files was 95.25%, reflecting strong algorithmic
performance when audio quality is high. A notable exception
was PA3, whose recordings included loud background
conversations and overlapping speakers, resulting in lower
accuracy.

B.2 Random Selection Scenario

In the randomly selected audio files approach, Files were
chosen from each participant’s recordings based on a
chronological download order ranging from the earliest to the
most recent. Then, each file numbered according to its position
in the sequence. A random selection from these files was made
until the total length of the selected recordings exceeded around



14 hours. This method introduced a mix of environments,
including background noise, overlapping speech, and other
real-world audio challenges. As shown in Fig. 8 (right), these
factors led to a noticeable drop in algorithm performance.
Participants such as PA10, PA16, and PA18 showed the largest
discrepancies between algorithm and manual labels. The
average accuracy across randomly selected files was 49.91%,
highlighting the algorithm’s sensitivity to complex and noisy
conditions.
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Fig. 8. Algorithm vs. manual speaking time for cherry-picked (left) and
randomly picked (right) audio files.

E. Analysis of Total Recording and Speaking Time

Participants demonstrated substantial variability in both total
recording duration and actual speaking time. The mean
recording time was 20.92 hours, with a median of 16.45 hours
and a standard deviation of 15.46 hours, reflecting diverse
engagement levels. Some participants, such as PA3 (63.94 hrs)
and PA8 (53.71 hrs), contributed extensive recordings but with
proportionally lower speaking time—4.41 hrs and 12.90 hrs,
respectively. In contrast, PAS, with a modest 16.98 hours of
recording, yielded 3.49 hours of speaking time, indicating more
active verbal participation during recordings.

These observations underscore the importance of evaluating
not just the volume of recorded data, but the amount of
meaningful speech content it contains. In some cases, lower
speaking time may be attributed to background noise or
environmental interference within the recordings, which can
hinder the algorithm's ability to detect and isolate the
participant’s voice. The overall distribution is summarized in
Table 2, and a visual comparison is presented in Figure 9.

TABLE 2
PARTICIPANTS TOTAL AUDIO RECORDING TIME AND ALGORITHM-DERIVED
SPEAKING TIME ACROSS THE ENTIRE STUDY.

Participants Total Recording Total Speaking
Time (hrs) Time (hrs)

PAO 12.30 0.96

PA1 24 .43 5.90

PA2 30.13 0.96

PA3 63.94 4.41

PA4 15.72 3.86

PAS5 16.98 3.49

PA6 1.56 0.39

PA7 26.47 4.13

PA8 53.71 12.90
PA9 15.72 0.92
PA10 10.74 3.80
PA11 15.91 2.05
PA12 26.56 6.57
PA13 8.86 1.96

PA14 8.03 2.57
PA15 11.58 1.44
PA16 17.30 1.69
PA18 22.05 1.32

Total Recording and Processed Speaking Time per Participant
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Fig. 9. Total recording vs. algorithm extracted speaking time per
participant.

F. Participant Feedback

Post-study interviews were conducted to gather participants'
feedback regarding the app and the smartwatch's usability.
participants revealed both positive experiences and areas for
improvement. Several users found the reminders helpful
“Reminders were good they helped me remember to record”
and described the app as “easy to use and clear.” Some reported
that “reminders came at the wrong time a few times”
specifically during classroom lectures when speaking was not
feasible. Suggested improvements like “I didn’t know when it
started recording — maybe a vibration would help.” Hardware
discomfort was also noted, with participants stating, “the watch
felt heavy and made my wrist sweat” and “the strap was itchy I
had to take it off during the day.” Others experienced technical
issues, saying “one time it said recording, but the file was not
saved,” and “battery ran out during recording, and it didn’t
save.” A participant’s parent suggested adding a total recording
time display to “track how many hours they have recorded so
far,” which led to the implementation of a new progress-
tracking feature. In contrast, one participant withdrew from the
study, expressing that they were not really confident to talk
while recording than usual. These insights were really helpful
and directly influenced changes to improve usability, comfort,
and recording reliability in future iterations.

G. Analysis of the Algorithm

PyannoteAudio diarization algorithm was evaluated under

two distinct conditions: cherry-picked audio files with minimal
background noise and randomly selected audio files with
varying levels of noise and overlap. The algorithm
demonstrated high performance on clear audio files, achieving
a low Diarization Error Rate (DER). However, performance
decreased significantly when background noise or overlapping
speakers were present, highlighting a need for refinement in
handling complex audio environments.
Participants demonstrated diverse levels of engagement during
the study, with speaking times varying significantly across
individuals. The following insights were observed based on the
data:

1) Impact of Recording Prompts: Participants who
followed the app’s scheduled prompts and recorded in



environments with clear speech and minimal
background noise showed significantly higher
speaking times and improved data quality. This
highlights the effectiveness of well-timed prompts and
the importance of noise-free conditions for accurate
data collection and better algorithm performance.

2) Environmental Factors: Participants recorded in
quieter, controlled environments with minimal
background noise, also recording made during group
conversations where the participant's voice was clear
without loud overlapping voices, generally provided
high-quality data. Participants recording in noisier or
more dynamic environments, such as public spaces
with interruptions, heavy crowds, overlapping voices,
or loud music, experienced difficulties capturing clear
participant voices. These conditions posed significant
challenges for the diarization algorithm.

VI. DISCUSSION

A. Effect of Recording Quality on Diarization Accuracy

Comparison between randomly labeled files and selectively
chosen recordings revealed several key insights. Files with
minimal background noise and clear participant speech
consistently produced higher-quality data and more accurate
diarization outcomes. These recordings demonstrated lower
Diarization Error Rates (DER), indicating optimal algorithm
performance under favorable conditions.

In contrast, randomly selected files often included

overlapping  speech, background disturbances, and
environmental noise, resulting in greater variability in accuracy
and higher DER values. These observations highlight current
limitations in diarization performance under real-world audio
conditions.
Controlled recording conditions significantly enhance the
quality of speaker recognition outcomes. Real-world challenges
such as ambient noise and overlapping voices expose the need
for improved noise-handling and voice separation techniques.

B. Suitable Audio Recordings

In our research, we looked for more conversational audio
recordings captured from the participants’ daily surroundings
which are useful for testing the algorithm’s effectiveness for
users voice recognition, rather than just files filled with
excessive background noise and loud music, In our scenario, a
suitable audio file is simply a conversational recording without
loud background noise or music that excessively interferes with
the participant's voice. These findings highlight the importance
of recording conditions and suggest strategies to improve both
user engagement and algorithm performance.

C. Study Limitations and Participant Bias

A limited sample size of 18 may not be sufficient to generalize
findings to include a broader population of individuals of ASD.
We are looking at individuals with ASD that are more verbal
and higher functioning. Demographic constraints from the age
range of 7-24 years old with a requirement for participants to
be higher function limits the generalizability of all individuals
with ASD, particularly those who are younger, older, and lower
functioning.

Reactivity Bias (Hawthorne Effect) must be taken into
consideration as well. Participants were asked to wear a watch
to self-record their social interactions. The bias occurs when
the participant alters their behavior due to their awareness that
they are going to be recording, being monitored and observed
later. Wearing the smartwatch can influence the participant to
speak more or less than they typically would.

VIl. CONCLUSION

This study demonstrates the successful integration of wearable
technology, cloud computing, and user-centered design to
enhance communication monitoring for individuals with
autism. By developing an Android-based wearable audio
recorder, a scalable AWS backend, and an intuitive dashboard,
the system offers reliable data capture, processing, and
visualization. A novel speaker identification approach, using a
sample of the target speaker’s voice, improved diarization
performance across diverse conditions. Despite technical
challenges—such as achieving precise notification timing,
automating cloud environment setup, and visualizing high-
volume data, the system was refined through iterative
development and validated through structured testing. The
project not only meets technical goals but also emphasizes
usability and accessibility, with future plans focused on scaling
the platform, integrating real-time analytics, and expanding
deployment through app store release and broader user testing.
Future work will also explore the integration of sensor and
patient activity data, enabling a more comprehensive
understanding of behavioral context and communication
patterns in naturalistic environments.
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